
An Automated Testing Suite for Computer Music Environments

Nils Peters
ICSI, CNMAT UC Berkeley

nils@icsi.berkeley.edu

Trond Lossius
BEK

trond.lossius@bek.no

Timothy Place
Electrotap

tim@electrotap.com

ABSTRACT

Software development benefits from systematic testing
with respect to implementation, optimization, and mainte-
nance. Automated testing makes it easy to execute a large
number of tests efficiently on a regular basis, leading to
faster development and more reliable software.

Systematic testing is not widely adopted within the com-
puter music community, where software patches tend to
be continuously modified and optimized during a project.
Consequently, bugs are often discovered during rehearsal
or performance, resulting in literal “show stoppers”. This
paper presents a testing environment for computer music
systems, first developed for the Jamoma framework and
Max. The testing environment works with Max 5 and 6, is
independ from any 3rd-party objects, and can be used with
non-Jamoma patches as well.

1. INTRODUCTION

1.1 Testing in sound and music computing

Stability and reliability is a general and important con-
cern in all development and use of software applications.
To artists and musicians working with real-time media
processing environments such as Max, SuperCollider or
Csound, programming is an integral part of their artistic
practice. Their patches can be considered software pro-
grams, and they also become critical and integrated parts
of the resulting artistic works, be that in the form of virtual
audio-visual instruments for live performances, or patches
used to run installations. In these contexts software reli-
ability is not just a question of being able to work effi-
ciently up front while preparing the artistic work, avoid-
ing the frustrating experience of loosing time and work in
progress due to sudden and unexpected bugs and crashes.
The very presentation of the works in concerts, perfor-
mances and exhibitions depends on the software, and quite
literally software defects can be show stoppers.

In 2002 the National Institute of Standards and Technol-
ogy (NIST) reported that software defects cost $59.5 Bil-
lion annually in the US, while a third of it could be elim-
inated by an improved testing infrastructure [1]. One be-
lieves that the earlier a bug is found, the cheaper the fix
becomes. A systematic approach to testing is part of con-

Copyright: c©2012 Nils Peters et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

temporary programming practice, making extensive use of
solutions for running automated tests on a regular basis.

In the sound and music computing community adop-
tion of systematic approaches to testing remain less wide-
spread. Bugs often surface when making changes to the
program, or the target environment or operating system,
and for this reason many artists tend to be hesitant about
changing their performance computer system or software
version because of the fear of unforeseen problems. They
might also be reluctant to doing last-minute changes and
improvements to their patches. The programs or patches
developed are often custom developed for a particular
project, and with increasing complexity patches become
increasingly vulnerable.

1.2 Importance of testing to Jamoma development

Plugtastic

Max
Environment

Ruby
Environment

Foundation

AudioUnit
Plug-in Hosts

Pure Data
Environment

System Layer
(Mac OS, Windows, PortAudio, Cairo, etc.)

...

Audio Graph
 DSPGraphics

Graph

User Lib

Modular

iOS

Figure 1. The Jamoma layered architecture

Jamoma is a real-time interactive media processing plat-
form structured as a layered architecture of several frame-
works (see Figure 1), providing a comprehensive infras-
tructure for creating computer music systems [A]. Jamoma
Foundation provides low-level C++ support, base classes,
and communication systems. Jamoma DSP specializes the
Foundation classes to provide a framework for creating a
library of unit generators [2]. Jamoma Graph networks
Jamoma Foundation based objects into graph structures.
Jamoma Audio Graph [3] is a C++ framework that extends
and specializes the Jamoma Graph layer. It provides the
ability to create and network Jamoma DSP objects into
dynamic graph structures for synchronous audio process-
ing. Jamoma Graphics provides screen graphics. Jamoma
Modular provides a structured approach to development
and control of modules in the graphical media environment
Max [4]. Plugtastic, the latest addition to the Jamoma ar-

mailto:nils@icsi.berkeley.edu
mailto:trond.lossius@bek.no
mailto:tim@electrotap.com
http://creativecommons.org/licenses/by/3.0/

chitecture, aims to create VST and AudioUnit plugins from
Max patches created with the Jamoma Audio Graph.

The Jamoma distribution is available for Windows and
Mac OS with a BSD open source license. At the time be-
ing Jamoma is mainly targeted at Max, but prototype im-
plementations are available for using parts of Jamoma with
Pure Data, as AudioUnit plugins and on the iOS platform.
Recently we have also started to explore the use of Jamoma
on Beagle and Panda boards.

Jamoma has been in development for more than eight
years, and has a mature, well-established codebase and a
large, active development team. As can be seen in Figure 1
the higher-level frameworks such as Modular depends on
several lower frameworks, and each of the frameworks
contains shared code providing core functionalities for sev-
eral Max externals. This potentially makes Jamoma vul-
nerable to the introduction of bugs and errors. For instance,
a change to the code in Foundation can have far-reaching
consequences, and might introduce issues and problems in
all of the frameworks. Similarly there is a complex set of
relationships between the Max externals that provide the
core infrastucture of Jamoma modules, and a change to
any of these externals might make all modules unstable.
The set of functionalities and dependencies are far too ex-
tensive and complex to be able to test manually whenever
code is being altered. Instead the Jamoma team strived to
develop a structured solution for automated testing. This
is used to implement a growing number of tests that aim at
ensuring that new functionalities work according to speci-
fications and that development do not introduce bugs.

2. AUTOMATED TESTING

The simplest approach to testing is to perform manual tests
invented on the fly while developing. This has the disad-
vantage that test cases represent a valuable investment that
will disappear after the testing has been completed. If tests
instead are implemented as executable code, they can be
saved and run again after changes to other components of
the program. This is known as regression testing [5], and
helps ensuring that resolved issues do not reappear later
on.

Tests might be added at different stages of the develop-
ment process. In test-driven development, the implementa-
tion of a new feature always starts out with development of
tests, and the tests also serve to specify and document the
feature. Tests might be developed explicitly to scrutinize
the program for problems, and according to [5] “testing is
the process of executing a program with the intent of find-
ing errors.” When bugs emerge in real-world use, the first
step towards resolving the bug is to determine a sequence
of steps by which to reproduce the bug and assess its out-
put. Thus, any bug report should ideally be reported in the
form of a test.

A number of guidelines for test development are offered
in [6]: A test should have one and one only assert state-
ment; we want to test a single concept only in each test
function. Tests should be fast to execute, so that they can
be run often. Tests should not depend on each other. Tests
should be repeatable in any environment, as this will vastly

help stability in cross-platform development. Finally the
tests should be self-validating (have a boolean output).

Well-design and readable tests can be executed easily and
often. This will speed up development and improve stabil-
ity, and keep the code flexible, maintainable, and reusable.
If you have tests, you do not fear making changes to the
code, but without tests every change is a possible bug [6].

2.1 Forms of testing

A complete taxonomy of types of software testing is be-
yond the scope of this paper, and likely to be impractical
for the scale of most computer music projects. Three forms
of testing that cover the most essential cases are Function
Testing, Unit Testing, and Integration Testing. These same
three forms of testing are emphasized in other software dis-
ciplines such as web application development using Ruby
on Rails [B] or Django [C].

The purpose for these different types of testing is to exer-
cise different layers of complexity in the software using a
structured and manageable approach.

2.1.1 Function Testing

Function testing exercises the various actions available
through the application programming interface (API) of
any given object (unit) of code. This test will query for
available parameters, attempt to set them to random val-
ues, check that ranges are limited correctly, attempt to
process audio, etc. One example of Function testing is
the AudioUnit validation performed by Apple’s auval

command-line program [D].

2.1.2 Unit Testing

Where function testing will ensure behavioral confor-
mance in a generic manner, Unit tests are custom tailored
to examine the specifics of a given object or unit. Unit
tests verify functionality of a module or specific section of
the code. These tests are most often written together with
the object. In Jamoma they are typically implemented as a
method in C++.

One benefit of unit testing is bug localization inside small
coding units. Unit testing alone cannot verify the com-
plete functionality of a piece of software, but it is rather
used together with Function testing to assure that the build-
ing blocks the software uses work independently of each
other. Function and Integration testing, although very use-
ful, have generally a much coarser localization (e.g. the
single Max external).

2.1.3 Integration Testing

Integration testing works to expose defects in the interac-
tion between any number of units when combined with
each other. In Jamoma we implement this kind of test on
the patcher level in Max, where many objects can be con-
nected together into a larger operational system.

2.2 Testing in computer music

In computer music, audio processes are crucial, but design-
ing DSP tests pose particular challenges as the data infor-
mation extends over time, and the sample values of audio

vectors might not be as easily accessible as in the case for
control data.

2.2.1 DSP testing

Traditionally, many audio devices are assumed to be lin-
ear time-invariant and are therefore described through their
impulse response. Standard test signals are clicks, sine
sweeps, or noise signals [7]. Three testing strategies based
on comparing inputs to outputs of a device under test are
discussed below.

In bit-exact testing, the output of a DSP process is com-
pared bitwise with a pre-computed reference signal. For
instance, the accuracy of a lowpass filter is tested by com-
paring the impulse response with the reference impulse re-
sponse for that filter. The reference impulse response may
have been captured from a reference implementation or has
been computed based on the lowpass filter specification.
Only if every bit of the output stream is exactly identical
with the reference signal, is the test correct. In practice,
bit-exact testing can be challenging, because of system-
and platform-dependent truncation errors in floating point
number calculations. Furthermore, the bit-exact test fails,
even if the signal contains the correct information, when
the output signal contains noise or a time-delay. In certain
situations it can be also inconvenient or impossible to have
a reference signal. For instance, for time-variant systems
where the output is not exactly predictable e.g., stochasti-
cal artificial reverbs, bit-exact testing does not work. Ac-
cording to [8], bit-exact testing has been used for low-bit
rate speech codecs.

A variety of bit-exact testing can be seen when testing
floating point numbers within a given absolute or rela-
tive tolerance range. Since floating-point truncation er-
rors differ across computer-platforms and compilers, toler-
ance testing is an efficient workaround especially for high-
resolution audio signals, where the perceptual differences
of the least significant bit may be not noticeable.

In parametric testing, rather than comparing signals with
each other, signal features of the output signal are com-
pared to signal features from a reference signal. A test
passes if all tested features from both signals are equal
within a pre-defined tolerance range. One example would
be an examination of the RT60 reverb time in order to val-
idate properties of an artificial reverb. Besides technical
parameter, parametric testing allows accounting for per-
ceptual properties e.g., for verifying the audio quality of a
compression algorithm. One has to keep in mind that para-
metric testing depend on the truthfulness of the extracted
features and that the quantity and kind of meaningful and
necessary tests depends on the DSP process.

2.2.2 Prior work

In the mass production of audio devices such as micro-
phones, loudspeakers and amplifiers, commercial testing
environments e.g., those by Audio Precision [F] are widely
used. An early report of automated testing in the audio de-
vice manufacturing process can be found in [9].

For Nokia’s DSP Entertainment Audio Platform, [8] de-
scribes the development of an automated testing environ-

ment based on parametric testing.
In the computer music community however, automated

testing seems to be not widely explored yet.
The Open Sound World (OSW) computer music environ-

ment used automatic testing based on sequences of OSC
messages to communicate between a python-based testing
framework and the OSW application [10]. In OSW, all ob-
jects are equipped with bidirectional OSC communication,
which allows to configure, control, and query the system
directly via OSC. Also using OSC, vectors of audio sam-
ples are communicated, thus enabling evaluation of audio
processes within the python framework.

The Faust project [11] does not provide any testing fea-
ture, but allows for generating and storing of output sig-
nals and the generation of Matlab code for further unit test-
ing [12].

3. THE JAMOMA TESTING SUITE

This section explains how unit and integration testing is
done in Jamoma, as illustrated by the Jamoma dataspace
library [13].

Most of Jamoma’s Max externals are implemented as
generic C++ units which are made available to Max by us-
ing a generalized wrapper function (see also [2]). The C++
functionalities are validated using unit tests, while testing
of the Max externals are performed as integration tests.

3.1 Unit testing

Several testing frameworks exists for C++, such as
CppUnit, UnitTest++, and Google Testing Framework.
However, as Jamoma Frameworks are based on a
dynamically-bound message passing model of commu-
nication and discoverability rather than statically linked
method calls, these existing test infrastructures are inad-
equate to meet our demands.

In Jamoma Foundation we have created a general infras-
tructure to support running automated tests with various
data types. For each class a test method is implemented
that can be extended to add the relevant tests for the class.
For instance TimeDataspace.h contains the following
method:
v i r t u a l TTErr t e s t (TTValue& r e t u r n e d T e s t I n f o) ;

This is defined in TimeDataspace.cpp as:
1 # i n c l u d e ” TimeDataspace . h ”
2
3 TTErr TimeDataspace : : t e s t (TTValue& r e t u r n e d I n f o)
4 {
5 i n t e r r o r C o u n t = 0
6 i n t t e s t A s s e r t i o n C o u n t = 0 ;
7 TTValue v , e x p e c t e d ;
8
9 / / Cr ea t e d a t a s p a c e o b j e c t

10 TTObjectPtr myDataspace = NULL;
11 TTErr e r r = T T O b j e c t I n s t a n t i a t e (TT (” d a t a s p a c e ”)

, (TTObjectPtr ∗)&myDataspace , kTTValNONE) ;
12
13 / / S e t u p t e s t c o n d i t i o n
14 myDataspace−>s e t A t t r i b u t e V a l u e (TT (” d a t a s p a c e ”) ,

TT (” t ime ”)) ;
15 myDataspace−>s e t A t t r i b u t e V a l u e (TT (” i n p u t U n i t ”) ,

TT (” mid i ”)) ;
16 myDataspace−>s e t A t t r i b u t e V a l u e (TT (” o u t p u t U n i t ”)

, TT (”Hz”)) ;
17 v = 6 9 . 0 ;

18 e x p e c t e d = 4 4 0 . 0 ;
19
20 / / A c t i o n
21 myDataspace−>sendMessage (TT (” c o n v e r t ”) , v , v) ;
22
23 / / Compare a c t u a l r e s u l t w i t h e x p e c t e d r e s u l t
24 T T T e s t A s s e r t i o n (”MIDI n o t e 69 t o Hz” ,

T T T e s t F l o a t E q u i v a l e n c e (TTFloat64 (v) ,
TTFloat64 (e x p e c t e d)) , t e s t A s s e r t i o n C o u n t ,
e r r o r C o u n t) ;

25
26 / / A d d i t i o n a l t e s t s can f o l l o w here . . .
27
28 / / Re po r t r e s u l t s
29 re turn T T T e s t F i n i s h (t e s t A s s e r t i o n C o u n t ,

e r r o r C o u n t , r e t u r n e d I n f o) ;
30 }

These test methods can be called from many C++ friendly
environments. We use Ruby to handle error counting,
benchmarking, and logging of the testing results. This is
particularly useful when doing debugging because one can
run a test very fast from the command line without the need
to start Max. These commands can be saved and recalled
as simple Ruby scripts:

1 # ! / u s r / b i n / ruby
2
3 r e q u i r e ’ Jamoma ’
4
5 p u t s ”TESTING TIME DATASPACE”
6 o = TTObject . new ” d a t a s p a c e . t ime ”
7 o . send ” t e s t ”

Below is an excerpt of the outcome when running the
script from the command line:

1 TESTING TIME DATASPACE
2 PASS −− MIDI n o t e 69 t o second
3 PASS −− Cent v a l u e 5700 t o second
4 PASS −− Cent v a l u e 6900 t o second
5
6 (. . . s n i p . . .)
7
8
9 Number o f a s s e r t i o n s : 29

10 Number o f f a i l e d a s s e r t i o n s : 0

3.2 Integration testing in Max

We developed a system to test the Jamoma externals within
Max. This testing system consists of a couple of Max ab-
stractions and a so called test harness. To ensure basic
functional assurance, all abstractions in the testing suite
are deliberately built from native Max objects rather than
from potentially less reliable 3rd party externals.

3.2.1 A simple test example

Figure 2. A simple example for testing a Max object

Figure 2 shows a simple example of an integration test
for our jcom.dataspace external, which converts val-
ues across a variety of units in different contexts e.g.,

in the context of gain units, or time units. This ex-
ample tests the conversion of a midi pitch into a fre-
quency value (similar to Cycling’74’s mtof function). The
jcom.test.assert.equal provides the main test func-
tionalities: sending data to a connected external or sub-
patch under test, receiving data from it, and compar-
ing them. In this example, we want to test if a midi
note 69 is correctly converted to 440 Hz. Therefore
we set up jcom.test.assert.equal with the attribues
@input 69. and @comparedTo 440.0. There are a few
additional attributes, e.g, @issue provides an URL to one
or more issues logged at our bugtracker web site [E]. When
the test patch is loaded, jcom.test.assert.equal re-
ceives the execute message start-jamoma-testing and
sends 69.0 to the connected code under test (see À in
Figure 2) which conversion result Á gets returned to
jcom.test.assert.equal. The test abstraction then
compares the received value with the expected value 440.0.
If these numbers are equal, the test passes and the test re-
sults are reported back as:
PASS midi2Hz

If the test fails, the reason for failing is reported too e.g., in
case the received value would be 12.2:
FAIL midi2Hz RECEIVED : 1 2 . 2 EXPECTED : 440 .0

With an additional @issue attribute, the output of a failed
test would show the URL to the bugtracker, indicating that
this bug is known, as well as providing convenient access
to the project resources for further details on the bug:
FAIL midi2Hz RECEIVED : 1 2 . 2 EXPECTED : 440 .0 −−

h t t p : / / redmine . jamoma . org / i s s u e s /1000

When all assertions in a test patcher have been processed,
the jcom.test.finished abstraction declares the end of
all tests and closes the patcher automatically. All incom-
plete assertions receive a timeout signal and are considered
as failed.

For evaluating different aspects of the code under test,
there can be multiple of such tests within one testing patch
e.g., for testing different input datatypes or testing specific
corner cases (e.g., testing undefined input data).

3.2.2 Testing DSP processes

For testing Audio DSP processes we have started to de-
velop parametric tests for audio objects. Figure 3 exempli-
fies a test for the panpot object jcom.panorama∼. Here,
we test if the external computes a hard-left panning cor-
rectly. Similar to the previous section, the core of the test
is again jcom.test.assert.equal. As a test signal for
the code under test, we create a simple signal with the value
of 1.0 using sig∼ 1.0. When the panpot is setup via the
control message position -1.0 for performing a hard-
left panning (see À in Figure 3), we expect that the code
under test will output the test signal only on the leftmost
channel, whereas the right channel will be just zeros. The
snapshot∼ object takes a probe of the two output sig-
nal vectors (Á and Â) and zl join combines these two
probes to a list which is then returned (Ã) to our testing ab-
straction. Besides the aforementioned attributes @input,
and @comparedTo, the @tolerance attribute is used here

to determine a tolerance region in which the returned val-
ues can differ with respect to the expected values. This
is necessary due to system-dependent rounding errors in
floating point numbers as described in Section 2.2.1, but is
also useful for testing features related to probabilities and
stochastical processes.

Figure 3. Testing the DSP object jcom.panorama∼

3.2.3 Automating the tests - the test harness

For an automated execution of a larger number of tests, we
implemented a so-called test harnesses. Our test harness
(the Jamoma testrunner) performs the following tasks:

1. Loading and initializing Max
2. Gathering all tests across Jamoma subprojects
3. Consecutive execution of tests
4. Collecting test results from individual tests
5. Tracking test progress
6. Writing results to log files

The testrunner is implemented in Ruby [14] primarily
to take advantage of its string parsing features. It is exe-
cuted from the command line and is fully automated. At
the beginning during Max’s initialization process, a bidi-
rectional OSC communication between Max and Ruby is
established by loading the jcom.test.manager abstrac-
tion. This abstraction executes commands received from
the testrunner, e.g. loading a specific test patch, and returns
the test results over OSC. When all tests are executed, log
files are created, providing an overview of all passed and
failed test results.

The jcom.test.manager is also useful when manually
running and monitoring one or more tests from Max it-
self, for instance in order to develop new tests or study the
outcome of a test in further details, e.g. by loading Max
Runtime from the Xcode debugger.

At the moment, the testrunner executes automatically 35
test patches with more than 400 test assertions within a
few minutes. These tests have been developed as part of
the process of implementing new features, according to a
test-driven development approach, or in the process of de-
bugging and resolving issues reported by Jamoma users.
So far the tests are primarily addressing the core function-
alities of Jamoma modules, and in particular the externals
that provides the infrastructure of the modules.

4. DISCUSSION AND FUTURE WORK

In this paper we discussed the importance and benefits of
automated testing systems within the computer music com-

munity. Especially when employing or re-using source
code and patches on different music programming plat-
forms, or using different operating systems and compilers,
testing is crucial. We exemplify how unit tests can be in-
tegrated in the C++ code and how integration tests within
Max can be executed for DSP and non-DSP patches or ob-
jects. Using a Ruby test harness we are able to regularly,
efficiently, and effortlessly execute a large number of tests.

Future work includes further development of testing
structures for DSP processing as well as additional tests
of DSP functionalities using a variety of audio signal fea-
tures. Currently, our tests use time-domain and signal en-
ergy features, but spectral-based features are often required
for more comprehensive tests. When comparing longer
signals, small errors e.g. in the coefficients of an IIR filter
can lead to artificial delays, so comparing windowed RMS
difference (or similar metrics) may perform better than a
sample-by-sample check. Further, more performance tests
are necessary with regards to DSP optimization and paral-
lel computing efforts.

Within the Jamoma team, testing has become an essen-
tial tool for our development and maintenance efforts, and
plays a crucial role in ensuring that Jamoma works with
Max 6 as well as Max 5 for both Windows and the Mac.
The tests continuously catch issues introduced in develop-
ment, and it is often less important exactly what bugs are
caught than how fast they are caught. It is our experience
that systematic testing keeps the code flexible, maintain-
able, and reusable, improves confidence in the code and
hence encourages bolder development cycles.

Some functionalities are easier to test than others. For
instance, the testing of user-interface objects or non-linear
audio processes pose challenges. By using automated tests,
simple testing can be handled by the computer while leav-
ing more time for manual testing of complicated issues.

We encourage readers to consider developing automatic
testing strategies for their own computer music environ-
ments, toolboxes and artistic or research projects. The
time investment will pay off sooner than one may expect.
We also welcome suggestions and additions to the Jamoma
testing suite which is hosted at [G] and coordinated via [H].
Because our Max testing system is free of 3rd-party depen-
dencies, this system can be easily adopted to other non-
Jamoma projects. A tutorial video illustrating how to use
the testing suite can be watched at the Jamoma Vimeo
channel at [I].

Acknowledgments

The initial unit test infrastructure was developed at a
workshop hosted by BEK in the winter of 2011. Nils Peters
is supported by the German Academic Exchange Service
(DAAD).

References and Web Resources
[1] M. Newman, “Software errors cost US economy

$59.5 billion annually,” National Institute of Stan-
dards and Technology (NIST), Tech. Rep. 10, 2002.

[2] T. Place, T. Lossius, and N. Peters, “A flexible and
dynamic C++ framework and library for digital au-
dio signal processing,” in Proc. of the International
Computer Music Conference, New York, US, 2010,
pp. 157–164.

[3] ——, “The Jamoma audio graph layer,” in Proc. of
the 13th Int’l Conference on Digital Audio Effects,
Graz, Austria, 2010.

[4] T. Place and T. Lossius, “Jamoma: A modular stan-
dard for structuring patches in Max,” in Proc. of
the 2006 International Computer Music Conference,
New Orleans, US, 2006, pp. 143–146.

[5] G. J. Myers, The Art of Software Testing. 2nd edition.
John Wiley & Sons, Inc., 2005.

[6] R. C. Martin, Clean code. A handbook of Agile soft-
ware craftsmanship. Prentice Hall, 2009.

[7] R. Cabot, “Fundamentals of modern audio measure-
ment,” J. Audio Eng. Soc., vol. 47, no. 9, pp. 738–762,
1999.

[8] M. E. Takanen, “Automated system level testing of
a software audio platform,” Master’s thesis, Helsinki
University of Technology, 2005.

[9] D. A. Roberts, “High speed automated test set,” in
34th AES Convention, Preprint 573, 1968.

[10] A. Chaudhary, “Automated testing of open-source
music software with open sound world and open-
sound control,” in Proc. of International Computer

Music Conference, Barcelona, Spain, 2005.
[11] Y. Orlarey, D. Fober, and S. Letz, “An algebra for

block diagram languages,” in Proc. of the Inter-
national Computer Music Conference, Gothenburg,
Sweden, 2002, pp. 542–547.

[12] J. Smith III, Audio Signal Processing in Faust, http://
ccrma.stanford.edu/∼jos/aspf/aspf.pdf ed., Section 4.

[13] T. Place, T. Lossius, A. R. Jensenius, N. Peters, and
P. Baltazar, “Addressing Classes by Differentiating
Values and Properties in OSC,” in Proc. of the Int’l
Conference on New Interfaces for Musical Expres-
sion, Genova, Italy, 2008, pp. 181–184.

[14] S. Ruby, D. Thomas, and D. H. Hansson, Agile Web
Development with Rails., 4th, Ed. The Pragmatic
Programmers LLC, 2011.

[A] http://jamoma.org
[B] http://guides.rubyonrails.org/testing.html
[C] https://docs.djangoproject.com/en/1.4/

topics/testing
[D] https://developer.apple.com/library/mac/

#documentation/Darwin/Reference/ManPages/
man1/auval.1.html

[E] http://redmine.jamoma.org/projects/jamoma/
issues

[F] http://ap.com
[G] http://github.com/jamoma/JamomaTest
[H] http://redmine.jamoma.org/projects/test
[I] http://vimeo.com/channels/jamoma/40776253

All quoted web resources were verified on May 21, 2012.

http://ccrma.stanford.edu/~jos/aspf/aspf.pdf
http://ccrma.stanford.edu/~jos/aspf/aspf.pdf
http://jamoma.org
http://guides.rubyonrails.org/testing.html
https://docs.djangoproject.com/en/1.4/topics/testing
https://docs.djangoproject.com/en/1.4/topics/testing
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/auval.1.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/auval.1.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/auval.1.html
http://redmine.jamoma.org/projects/jamoma/issues
http://redmine.jamoma.org/projects/jamoma/issues
http://ap.com
http://github.com/jamoma/JamomaTest
http://redmine.jamoma.org/projects/test
http://vimeo.com/channels/jamoma/40776253

	 1. Introduction
	1.1 Testing in sound and music computing
	1.2 Importance of testing to Jamoma development

	 2. Automated testing
	2.1 Forms of testing
	2.1.1 Function Testing
	2.1.2 Unit Testing
	2.1.3 Integration Testing

	2.2 Testing in computer music
	2.2.1 DSP testing
	2.2.2 Prior work

	 3. The Jamoma Testing Suite
	3.1 Unit testing
	3.2 Integration testing in Max
	3.2.1 A simple test example
	3.2.2 Testing DSP processes
	3.2.3 Automating the tests - the test harness

	 4. Discussion and Future Work

